
14 Power series

From now on I will consider not the general functional series, but a special, albeit highly important,
class of them: power series.

14.1 Theory

Definition 14.1. A power series with the center at z = z0 is the expression of the form

c0 + c1(z − z0) + c2(z − z0)
2 + . . .+ cn(z − z0)

n + . . . =
∞∑
n=0

cn(z − z0)
n, (14.1)

where cn are given complex numbers and the convention 00 = 1 is used.

Example 14.2. Due to its importance, I recall our main example — geometric series, which is clearly
a power series with the center at z = 0:

1 + z + z2 + z3 + . . .+ zn + . . . =
1

1− z
,

where the series converges absolutely, and hence pointwise, for all |z| < 1, and diverge for |z| ≥ 1.
Moreover, this series converges uniformly in each compact disk B(0, r) = {|z| ≤ r : r ∈ [0, 1)}. In
other words, geometric series converges inside the disk of radius R = 1 and diverges outside this disk.
It turns out that the situation is very similar for a general power series (14.1).

Proposition 14.3. Define R ∈ [0,∞] by

R = sup{r ≥ 0: (cnr
n)∞n=0 is bounded}.

Then the power series (14.1) converges absolutely and uniformly on any compact subset of the ball
(disk) B(z0, R) and diverges at every point |z − z0| > R.

Remark 14.4. The constant R, quite naturally, is called the radius of convergence. The disk B(z0, R)
is called the disk or region of convergence. Note that the proposition says nothing about the behavior
of the power series on the boundary ∂B(z0, R). In short: anything can happen on ∂B.

Proof. The second part is immediate: if |z − z0| > R then by definition the terms of the series are
not even bounded, therefore no convergence is possible. To prove the first part, take B(z0, r), where
r < R. Choose r < ρ < R, the definition of R implies that (cnρ

n) is bounded: |cn|ρn < M for some
constant M . Then for all z ∈ B(z0, r) |cn(z − z0)

n| ≤ |cn|ρn(rn/ρn) ≤ M(r/ρ)n = Mn. The series∑
n≥nMn converges as the geometric series with 0 < r/ρ < 1, and therefore by the Weierstrass M-test

the power series converges absolutely and uniformly on any B(z0, r), r < R and hence for any compact
subset of B(z0, R). �
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Remark 14.5. The given definition for the radius of convergence is difficult to use in practice. Its
traditional formula is given by

R = lim inf
n→∞

|cn|−1/n,

if you know what lim inf is. In the textbook you can find a proof that if (|cn|−1/n) has a limit then R
is this limit. Probably computationally the most convenient formula is

1/R = lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ ,
if this limit exists (R = ∞ if this limit is zero). This was discussed in Calc II as the ratio test.

For instance, recall that I defined

exp z = ez = 1 + z +
z2

2!
+ . . .

Therefore I have

lim
n→∞

1

(n+ 1)!

n!

1
= lim

n→∞

1

n+ 1
= 0,

and hence R = ∞. The same infinite radius of convergence for the series of sine and cosine functions.
For the geometric series the ratio test will give, as expected, R = 1.

Remark 14.6. Slightly more can be proved. Specifically, the missing piece is that for |z − z0| < R
the power series converges absolutely. See the textbook for the details.

Now I can apply the results about uniform convergence from the previous lecture to the power
series. Specifically,

Proposition 14.7. Let B(z0, R) be the disk of convergence of (14.1) with R > 0. Then

1. The power series converges to a continuous on B(z0, R) function.

2. For any γ ⊆ B ∫
γ

∞∑
n=0

cn(z − z0)
ndz =

∞∑
n=0

cn

∫
γ
(z − z0)

ndz.

3. If γ ⊆ B is closed then ∫
γ

∞∑
n=0

cn(z − z0)
ndz = 0.

4. Series (14.1) is a holomorphic function inside B(z0, R).

5.

6. The power series can be differentiated term by term,

f ′(z) =

∞∑
n=1

ncn(z − z0)
n−1,

for any z ∈ B(z0, R), and the radius of convergence of the last series if R again.

cn =
f (n)(z0)

n!
.
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Proof. The proof of the first two points follows from the fact the power series converges uniformly
in each compact subset of B(z0, R) and any point z and any path γ can be considered inside some
B(z0, ρ), ρ < R. Point 3 is a direct calculation (recall the fundamental integral).

To prove point 4 I note that f is continuous as a limit of uniformly convergent series, and any
integral of f along a closed γ is zero by point 3. By Morera’s theorem f must be holomorphic.

To prove 5 I take z ∈ B(z0, R), |z − z0| < r < R. Since f is holomorphic at z I can use Cauchy’s
integral formula to write (γ = ∂B(z0, r))

f ′(z) =
1

2πi

∫
γ

f(w)

(w − z)2
dw =

1

2πi

∫
γ

1

(w − z)2

∑
n≥0

cn(w − z0)
ndw =

∑
n≥0

cn
1

2πi

∫
γ

(w − z0)
n

(w − z)
dw,

where I exchanged the order of summation and integration since power series converges uniformly.
Now note that if fn(w) = (w − z0)

n, then

f ′
n(z) =

1

2πi

∫
γ

(w − z0)
n

(w − z)2
dw

on one hand, and f ′
n(z) = n(z − z0)

n−1 by direct calculations. Hence,

f ′(z) =
∑
n≥0

cnn(z − z0)
n−1

at least inside B(z0, R), where I performed all the manipulations. To see that the radius of convergence
cannot exceed R note that the coefficients of (z − z0)f

′(z) are ncn, and clearly |ncn| > |cn|, hence the
series for the derivative cannot converge at the points where the series for f diverges.

Finally, for 6, I note that f(z0) = c0. Invoking part 5, I get f ′(z0) = c1. Continuing by induction
I get the required formula. Note also that since we got formulas for the coefficients of a power series,
they must be unique. Formally, if

f(z) =
∑

ck(z − z0)
k

and
f(z) =

∑
bk(z − z0)

k

then ck = bk. �

14.2 Applications

The previous section was somewhat theoretical. Here I would like to consider a bunch of examples,
mainly of the form: here is a given function. How to find its power series around given z0. Ideally, I
also would like to know the radius of convergence of this power series. Now we have enough tools and
examples to make this procedure quite straightforward.

First I would like to note that the most direct way to find the power series, namely, to use the
relation

cn =
f (n)(z0)

n!
,

is usually the most tedious one. So here is the rule: if it is possible to determine the power series
without explicit use of the formulas above, go for it, save these formulas as the last resort.
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Example 14.8. I know that

1 + z + z2 + z3 + . . . =
1

1− z

if |z| < 1. Let me use this relation to find the power series of

f(z) =
A

z − a
,

where A, a are some complex constants. First I note that if z0 = a then power series does not exist
because the expression is not even determined at the point z = a. Next, let me write

A

z − a
=

A

z − z0 + z0 − a
= − A

(a− z0)(1− z−z0
a−z0

)

Since the fraction can be represented, using the geometric series, as

1

1− z−z0
a−z0

= 1 +
z − z0
a− z0

+

(
z − z0
a− z0

)2

+ . . . ,

I obtain the final result

A

z − a
= − A

a− z0

(
1 +

z − z0
a− z0

+

(
z − z0
a− z0

)2

+ . . .

)
= − A

a− z0
− A(z − z0)

(a− z0)2
− . . .

This expression must be valid for all z ∣∣∣∣z − z0
a− z0

∣∣∣∣ < 1

or
|z − z0| < |a− z0|,

i.e., inside the disk with the center at z0 and radius |a− z0|.

Example 14.9. What is the power series of

1

(1− z)p

around z0 = 0? Here p is a natural number.
By differentiating the power series for the geometric series I find

1

(1− z)2
= 1 + 2z + 3z2 + . . . ,

2

(1− z)3
= 2 + 3 · 2z + 4 · 3z2 + . . . ,

and so on. Introducing (
n

k

)
=

n!

k!(n− k)!
,

I end up with the general expression

1

(1− z)p
= 1 +

(
p+ 1

p

)
z +

(
p+ 2

p

)
z2 +

(
p+ 3

p

)
z3 + . . .

The radius of convergence of this series is |z| < 1, because differentiating does not change it.
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Example 14.10. Taking together two previous examples, I find

A

(z − a)p
=

(−1)pA

(a− z0)p
+

(
p+ 1

p

)
(−1)pA(z − z0)

(a− z0)p+1
+

(
p+ 2

p

)
(−1)pA(z − z0)

2

(a− z0)p+2
+ . . .

with the region of convergence |z − z0| < |a− z0|.

If the previous examples are clear it means that now the student should be able to represent any
rational function as a power series around some z0, the only condition is that z0 is not a zero of
denominator. Instead of general formulas, here is an example.

Example 14.11. Find the power series of

380 + 87z + 3z3

(5− z)(2 + z)(9 + z2)

around z = 0.
First, I note that this function can be written as (partial fraction decomposition)

380 + 87z + 3z3

(5− z)(2 + z)(9 + z2)
=

5

5− z
+

2

2 + z
+

20

9 + z2
.

Now
5

5− z
=

1

1− z
5

=
∑
n≥0

(z
5

)n
,

2

2 + z
=

1

1 + z
2

=
∑
n≥0

(
z

−2

)n

,

and
20

9 + z2
=

20

9
· 1

1 + z2

9

=
20

9

∑
n≥0

(
z2

−9

)n

=
20

9

∑
n≥0

(
z2

3i

)2n

.

Therefore, I get the series with the coefficients

cn =

{
1
5n + (−1)n 1

2n , n = 2m+ 1,
1
5n + (−1)n 1

2n + 20
9 (−1)n/2 · 1

3n , n = 2m.

What is the radius of convergence? Note that the first “elementary” series converges for |z| < 5,
second for |z| < 2, and third for |z| < 3. Choosing the smallest our of these numbers I conclude that
R = 2 for my my series.

I chose here that z0 = 0 but nothing (well, except that the calculations become a little more
tedious) would change for a different z0.

For instance, take z0 = 2. Note that the radius of convergence is the smallest distance our of
|5− 2|, | − 2− 2| and | ± 3i− 2|, hence R = 3. I will leave the rest of the details to the reader.

In the following examples I choose z0 = 0 but note that no generality is lost here. If z0 = a then
let w = z − a be a new variable, f(z) = f(w + a) = f̃(w). Now I find the power series for f̃ around
w = 0. Returning to the original variable z I get the series around z0 = a.
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Example 14.12.

f(z) =
1

1− z
+ ez.

using the known series

f(z) = (1 + z + z2 + . . .) + (1 + z +
z2

2!
+ . . .) =

∑
n≥0

(
1 +

1

n!

)
zn.

The radius of convergence is 1, because the series for ez converges everywhere in C.

Example 14.13.
f(z) = (1− z + z2)ez.

In a similar vein,

f(z) = (1− z + z2)(1 + z + z2/2! + . . .) =
∑
n≥0

zn

n!
−
∑
n≥0

zn+1

n!
+
∑
n≥0

zn+2

n!
= 1 +

∑
n≥2

(
1− 1

n

)
zn

(n− 2)!
.

The radius of convergence is R = ∞.

Example 14.14.
f(z) = e−z2 .

Using the series for the exponent, I get

f(z) = 1− z2 +
z4

2!
− z6

3!
+ . . .

Example 14.15.
f(z) = ez cos z.

All we need here is to remember the series for exp and cos:

f(z) = (1 + z + z2/2! + . . .)(1− z2/2! + z4/4!− . . .) = 1 + z − 1

3
z3 − 1

4
z4 − 1

30
z5 + 0 · z6 + . . .

Example 14.16.
f(z) = arctan z.

Here I am taking the branch of the arctangent for which arctan 0 = 0. If you recall that arctan can
be represent through log, and

(log z)′ =
1

z ,

for any branch, then one can show that

(arctan z)′ =
1

1 + z2
.

I know that
1

1 + z2
= 1− z2 + z4 − z6 + . . . ,

and the radius of convergence is |z| < 1. Hence,

arctan z =

∫ z

0

dw

1 + w2
= z − z3

3
+

z5

5
− . . .

The radius of convergence here is |z| < 1.
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Example 14.17.
f(z) = log(1 + z)

Here I use the branch of log for which log 1 = 0. I have

log(1 + z) =

∫ 1+z

1

dw

w
=

∫ z

0

dw

1 + w
= z − z2

2
+

z3

3
− . . .

because
1

1 + z
= 1− z + z2 − z3 + . . .

The radius of convergence is |z| < 1.

Example 14.18.
f(z) = tan z.

Here is our first nontrivial example. So let me do the following trick: recall that tan z = sin z/ cos z,
and the series for both cosine and sine we know. So, assuming that

tan z = c0 + c1z + c2z
2 + . . .

I can write that
sin z = (c0 + c1z + c2z

2 + . . .) cos z

or

z − z3

3!
+

z5

5!
− . . . = (c0 + c1z + c2z

2 + . . .)

(
1− z2

2!
+

z4

4!
− . . .

)
Comparing the coefficients at the same powers on the left and on the right, I find that

c1 = 1,

−1

2
c1 + c3 = −1

6
,

1

24
c1 −

1

2
c3 + c5 =

1

120
,

. . .

which implies that c1 = 1, c3 = 1/3, c5 = 2/15, . . .
However, for this example we have no rigorous way to determine the radius of convergence (and

our tests for it are of no help since we know no general formula for cn). Yet. See the next lecture.
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