14 Power series

From now on I will consider not the general functional series, but a special, albeit highly important, class of them: power series.

14.1 Theory

Definition 14.1. A power series with the center at $z=z_{0}$ is the expression of the form

$$
\begin{equation*}
c_{0}+c_{1}\left(z-z_{0}\right)+c_{2}\left(z-z_{0}\right)^{2}+\ldots+c_{n}\left(z-z_{0}\right)^{n}+\ldots=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \tag{14.1}
\end{equation*}
$$

where c_{n} are given complex numbers and the convention $0^{0}=1$ is used.
Example 14.2. Due to its importance, I recall our main example - geometric series, which is clearly a power series with the center at $z=0$:

$$
1+z+z^{2}+z^{3}+\ldots+z^{n}+\ldots=\frac{1}{1-z}
$$

where the series converges absolutely, and hence pointwise, for all $|z|<1$, and diverge for $|z| \geq 1$. Moreover, this series converges uniformly in each compact disk $\bar{B}(0, r)=\{|z| \leq r: r \in[0,1)\}$. In other words, geometric series converges inside the disk of radius $R=1$ and diverges outside this disk. It turns out that the situation is very similar for a general power series (14.1).

Proposition 14.3. Define $R \in[0, \infty]$ by

$$
R=\sup \left\{r \geq 0:\left(c_{n} r^{n}\right)_{n=0}^{\infty} \text { is bounded }\right\}
$$

Then the power series (14.1) converges absolutely and uniformly on any compact subset of the ball (disk) $B\left(z_{0}, R\right)$ and diverges at every point $\left|z-z_{0}\right|>R$.

Remark 14.4. The constant R, quite naturally, is called the radius of convergence. The disk $B\left(z_{0}, R\right)$ is called the disk or region of convergence. Note that the proposition says nothing about the behavior of the power series on the boundary $\partial B\left(z_{0}, R\right)$. In short: anything can happen on ∂B.

Proof. The second part is immediate: if $\left|z-z_{0}\right|>R$ then by definition the terms of the series are not even bounded, therefore no convergence is possible. To prove the first part, take $\bar{B}\left(z_{0}, r\right)$, where $r<R$. Choose $r<\rho<R$, the definition of R implies that $\left(c_{n} \rho^{n}\right)$ is bounded: $\left|c_{n}\right| \rho^{n}<M$ for some constant M. Then for all $z \in \bar{B}\left(z_{0}, r\right)\left|c_{n}\left(z-z_{0}\right)^{n}\right| \leq\left|c_{n}\right| \rho^{n}\left(r^{n} / \rho^{n}\right) \leq M(r / \rho)^{n}=M_{n}$. The series $\sum_{n \geq n} M_{n}$ converges as the geometric series with $0<r / \rho<1$, and therefore by the Weierstrass M-test the power series converges absolutely and uniformly on any $\bar{B}\left(z_{0}, r\right), r<R$ and hence for any compact subset of $B\left(z_{0}, R\right)$.

[^0]Remark 14.5. The given definition for the radius of convergence is difficult to use in practice. Its traditional formula is given by

$$
R=\liminf _{n \rightarrow \infty}\left|c_{n}\right|^{-1 / n}
$$

if you know what liminf is. In the textbook you can find a proof that if $\left(\left|c_{n}\right|^{-1 / n}\right)$ has a limit then R is this limit. Probably computationally the most convenient formula is

$$
1 / R=\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|
$$

if this limit exists ($R=\infty$ if this limit is zero). This was discussed in Calc II as the ratio test.
For instance, recall that I defined

$$
\exp z=e^{z}=1+z+\frac{z^{2}}{2!}+\ldots
$$

Therefore I have

$$
\lim _{n \rightarrow \infty} \frac{1}{(n+1)!} \frac{n!}{1}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0
$$

and hence $R=\infty$. The same infinite radius of convergence for the series of sine and cosine functions.
For the geometric series the ratio test will give, as expected, $R=1$.
Remark 14.6. Slightly more can be proved. Specifically, the missing piece is that for $\left|z-z_{0}\right|<R$ the power series converges absolutely. See the textbook for the details.

Now I can apply the results about uniform convergence from the previous lecture to the power series. Specifically,
Proposition 14.7. Let $B\left(z_{0}, R\right)$ be the disk of convergence of (14.1) with $R>0$. Then

1. The power series converges to a continuous on $B\left(z_{0}, R\right)$ function.
2. For any $\gamma \subseteq B$

$$
\int_{\gamma} \sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \mathrm{~d} z=\sum_{n=0}^{\infty} c_{n} \int_{\gamma}\left(z-z_{0}\right)^{n} \mathrm{~d} z .
$$

3. If $\gamma \subseteq B$ is closed then

$$
\int_{\gamma} \sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \mathrm{~d} z=0
$$

4. Series (14.1) is a holomorphic function inside $B\left(z_{0}, R\right)$.
5.
6. The power series can be differentiated term by term,

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n c_{n}\left(z-z_{0}\right)^{n-1},
$$

for any $z \in B\left(z_{0}, R\right)$, and the radius of convergence of the last series if R again.

$$
c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!} .
$$

Proof. The proof of the first two points follows from the fact the power series converges uniformly in each compact subset of $B\left(z_{0}, R\right)$ and any point z and any path γ can be considered inside some $\bar{B}\left(z_{0}, \rho\right), \rho<R$. Point 3 is a direct calculation (recall the fundamental integral).

To prove point 4 I note that f is continuous as a limit of uniformly convergent series, and any integral of f along a closed γ is zero by point 3 . By Morera's theorem f must be holomorphic.

To prove 5 I take $z \in B\left(z_{0}, R\right),\left|z-z_{0}\right|<r<R$. Since f is holomorphic at $z \mathrm{I}$ can use Cauchy's integral formula to write $\left(\gamma=\partial B\left(z_{0}, r\right)\right)$

$$
f^{\prime}(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{f(w)}{(w-z)^{2}} \mathrm{~d} w=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{1}{(w-z)^{2}} \sum_{n \geq 0} c_{n}\left(w-z_{0}\right)^{n} \mathrm{~d} w=\sum_{n \geq 0} c_{n} \frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\left(w-z_{0}\right)^{n}}{(w-z)} \mathrm{d} w,
$$

where I exchanged the order of summation and integration since power series converges uniformly.
Now note that if $f_{n}(w)=\left(w-z_{0}\right)^{n}$, then

$$
f_{n}^{\prime}(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\left(w-z_{0}\right)^{n}}{(w-z)^{2}} \mathrm{~d} w
$$

on one hand, and $f_{n}^{\prime}(z)=n\left(z-z_{0}\right)^{n-1}$ by direct calculations. Hence,

$$
f^{\prime}(z)=\sum_{n \geq 0} c_{n} n\left(z-z_{0}\right)^{n-1}
$$

at least inside $B\left(z_{0}, R\right)$, where I performed all the manipulations. To see that the radius of convergence cannot exceed R note that the coefficients of $\left(z-z_{0}\right) f^{\prime}(z)$ are $n c_{n}$, and clearly $\left|n c_{n}\right|>\left|c_{n}\right|$, hence the series for the derivative cannot converge at the points where the series for f diverges.

Finally, for 6 , I note that $f\left(z_{0}\right)=c_{0}$. Invoking part 5 , I get $f^{\prime}\left(z_{0}\right)=c_{1}$. Continuing by induction I get the required formula. Note also that since we got formulas for the coefficients of a power series, they must be unique. Formally, if

$$
f(z)=\sum c_{k}\left(z-z_{0}\right)^{k}
$$

and

$$
f(z)=\sum b_{k}\left(z-z_{0}\right)^{k}
$$

then $c_{k}=b_{k}$.

14.2 Applications

The previous section was somewhat theoretical. Here I would like to consider a bunch of examples, mainly of the form: here is a given function. How to find its power series around given z_{0}. Ideally, I also would like to know the radius of convergence of this power series. Now we have enough tools and examples to make this procedure quite straightforward.

First I would like to note that the most direct way to find the power series, namely, to use the relation

$$
c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!},
$$

is usually the most tedious one. So here is the rule: if it is possible to determine the power series without explicit use of the formulas above, go for it, save these formulas as the last resort.

Example 14.8. I know that

$$
1+z+z^{2}+z^{3}+\ldots=\frac{1}{1-z}
$$

if $|z|<1$. Let me use this relation to find the power series of

$$
f(z)=\frac{A}{z-a}
$$

where A, a are some complex constants. First I note that if $z_{0}=a$ then power series does not exist because the expression is not even determined at the point $z=a$. Next, let me write

$$
\frac{A}{z-a}=\frac{A}{z-z_{0}+z_{0}-a}=-\frac{A}{\left(a-z_{0}\right)\left(1-\frac{z-z_{0}}{a-z_{0}}\right)}
$$

Since the fraction can be represented, using the geometric series, as

$$
\frac{1}{1-\frac{z-z_{0}}{a-z_{0}}}=1+\frac{z-z_{0}}{a-z_{0}}+\left(\frac{z-z_{0}}{a-z_{0}}\right)^{2}+\ldots
$$

I obtain the final result

$$
\frac{A}{z-a}=-\frac{A}{a-z_{0}}\left(1+\frac{z-z_{0}}{a-z_{0}}+\left(\frac{z-z_{0}}{a-z_{0}}\right)^{2}+\ldots\right)=-\frac{A}{a-z_{0}}-\frac{A\left(z-z_{0}\right)}{\left(a-z_{0}\right)^{2}}-\ldots
$$

This expression must be valid for all z

$$
\left|\frac{z-z_{0}}{a-z_{0}}\right|<1
$$

or

$$
\left|z-z_{0}\right|<\left|a-z_{0}\right|
$$

i.e., inside the disk with the center at z_{0} and radius $\left|a-z_{0}\right|$.

Example 14.9. What is the power series of

$$
\frac{1}{(1-z)^{p}}
$$

around $z_{0}=0$? Here p is a natural number.
By differentiating the power series for the geometric series I find

$$
\begin{aligned}
& \frac{1}{(1-z)^{2}}=1+2 z+3 z^{2}+\ldots \\
& \frac{2}{(1-z)^{3}}=2+3 \cdot 2 z+4 \cdot 3 z^{2}+\ldots
\end{aligned}
$$

and so on. Introducing

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

I end up with the general expression

$$
\frac{1}{(1-z)^{p}}=1+\binom{p+1}{p} z+\binom{p+2}{p} z^{2}+\binom{p+3}{p} z^{3}+\ldots
$$

The radius of convergence of this series is $|z|<1$, because differentiating does not change it.

Example 14.10. Taking together two previous examples, I find

$$
\frac{A}{(z-a)^{p}}=\frac{(-1)^{p} A}{\left(a-z_{0}\right)^{p}}+\binom{p+1}{p} \frac{(-1)^{p} A\left(z-z_{0}\right)}{\left(a-z_{0}\right)^{p+1}}+\binom{p+2}{p} \frac{(-1)^{p} A\left(z-z_{0}\right)^{2}}{\left(a-z_{0}\right)^{p+2}}+\ldots
$$

with the region of convergence $\left|z-z_{0}\right|<\left|a-z_{0}\right|$.
If the previous examples are clear it means that now the student should be able to represent any rational function as a power series around some z_{0}, the only condition is that z_{0} is not a zero of denominator. Instead of general formulas, here is an example.

Example 14.11. Find the power series of

$$
\frac{380+87 z+3 z^{3}}{(5-z)(2+z)\left(9+z^{2}\right)}
$$

around $z=0$.
First, I note that this function can be written as (partial fraction decomposition)

$$
\frac{380+87 z+3 z^{3}}{(5-z)(2+z)\left(9+z^{2}\right)}=\frac{5}{5-z}+\frac{2}{2+z}+\frac{20}{9+z^{2}} .
$$

Now

$$
\begin{gathered}
\frac{5}{5-z}=\frac{1}{1-\frac{z}{5}}=\sum_{n \geq 0}\left(\frac{z}{5}\right)^{n}, \\
\frac{2}{2+z}=\frac{1}{1+\frac{z}{2}}=\sum_{n \geq 0}\left(\frac{z}{-2}\right)^{n},
\end{gathered}
$$

and

$$
\frac{20}{9+z^{2}}=\frac{20}{9} \cdot \frac{1}{1+\frac{z^{2}}{9}}=\frac{20}{9} \sum_{n \geq 0}\left(\frac{z^{2}}{-9}\right)^{n}=\frac{20}{9} \sum_{n \geq 0}\left(\frac{z^{2}}{3 \mathrm{i}}\right)^{2 n} .
$$

Therefore, I get the series with the coefficients

$$
c_{n}= \begin{cases}\frac{1}{5^{n}}+(-1)^{n} \frac{1}{2^{n}}, & n=2 m+1, \\ \frac{1}{5^{n}}+(-1)^{n} \frac{1}{2^{n}}+\frac{20}{9}(-1)^{n / 2} \cdot \frac{1}{3^{n}}, & n=2 m .\end{cases}
$$

What is the radius of convergence? Note that the first "elementary" series converges for $|z|<5$, second for $|z|<2$, and third for $|z|<3$. Choosing the smallest our of these numbers I conclude that $R=2$ for my my series.

I chose here that $z_{0}=0$ but nothing (well, except that the calculations become a little more tedious) would change for a different z_{0}.

For instance, take $z_{0}=2$. Note that the radius of convergence is the smallest distance our of $|5-2|,|-2-2|$ and $| \pm 3 \mathrm{i}-2|$, hence $R=3$. I will leave the rest of the details to the reader.

In the following examples I choose $z_{0}=0$ but note that no generality is lost here. If $z_{0}=a$ then let $w=z-a$ be a new variable, $f(z)=f(w+a)=\tilde{f}(w)$. Now I find the power series for \tilde{f} around $w=0$. Returning to the original variable $z \mathrm{I}$ get the series around $z_{0}=a$.

Example 14.12.

$$
f(z)=\frac{1}{1-z}+e^{z} .
$$

using the known series

$$
f(z)=\left(1+z+z^{2}+\ldots\right)+\left(1+z+\frac{z^{2}}{2!}+\ldots\right)=\sum_{n \geq 0}\left(1+\frac{1}{n!}\right) z^{n} .
$$

The radius of convergence is 1 , because the series for e^{z} converges everywhere in \mathbf{C}.
Example 14.13.

$$
f(z)=\left(1-z+z^{2}\right) e^{z} .
$$

In a similar vein,
$f(z)=\left(1-z+z^{2}\right)\left(1+z+z^{2} / 2!+\ldots\right)=\sum_{n \geq 0} \frac{z^{n}}{n!}-\sum_{n \geq 0} \frac{z^{n+1}}{n!}+\sum_{n \geq 0} \frac{z^{n+2}}{n!}=1+\sum_{n \geq 2}\left(1-\frac{1}{n}\right) \frac{z^{n}}{(n-2)!}$.
The radius of convergence is $R=\infty$.
Example 14.14.

$$
f(z)=e^{-z^{2}} .
$$

Using the series for the exponent, I get

$$
f(z)=1-z^{2}+\frac{z^{4}}{2!}-\frac{z^{6}}{3!}+\ldots
$$

Example 14.15.

$$
f(z)=e^{z} \cos z .
$$

All we need here is to remember the series for exp and cos:

$$
f(z)=\left(1+z+z^{2} / 2!+\ldots\right)\left(1-z^{2} / 2!+z^{4} / 4!-\ldots\right)=1+z-\frac{1}{3} z^{3}-\frac{1}{4} z^{4}-\frac{1}{30} z^{5}+0 \cdot z^{6}+\ldots
$$

Example 14.16.

$$
f(z)=\arctan z .
$$

Here I am taking the branch of the arctangent for which $\arctan 0=0$. If you recall that arctan can be represent through log, and

$$
(\log z)^{\prime}=\frac{1}{z}
$$

for any branch, then one can show that

$$
(\arctan z)^{\prime}=\frac{1}{1+z^{2}}
$$

I know that

$$
\frac{1}{1+z^{2}}=1-z^{2}+z^{4}-z^{6}+\ldots
$$

and the radius of convergence is $|z|<1$. Hence,

$$
\arctan z=\int_{0}^{z} \frac{\mathrm{~d} w}{1+w^{2}}=z-\frac{z^{3}}{3}+\frac{z^{5}}{5}-\ldots
$$

The radius of convergence here is $|z|<1$.

Example 14.17.

$$
f(z)=\log (1+z)
$$

Here I use the branch of \log for which $\log 1=0$. I have

$$
\log (1+z)=\int_{1}^{1+z} \frac{\mathrm{~d} w}{w}=\int_{0}^{z} \frac{\mathrm{~d} w}{1+w}=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\ldots
$$

because

$$
\frac{1}{1+z}=1-z+z^{2}-z^{3}+\ldots
$$

The radius of convergence is $|z|<1$.

Example 14.18.

$$
f(z)=\tan z
$$

Here is our first nontrivial example. So let me do the following trick: recall that $\tan z=\sin z / \cos z$, and the series for both cosine and sine we know. So, assuming that

$$
\tan z=c_{0}+c_{1} z+c_{2} z^{2}+\ldots
$$

I can write that

$$
\sin z=\left(c_{0}+c_{1} z+c_{2} z^{2}+\ldots\right) \cos z
$$

or

$$
z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots=\left(c_{0}+c_{1} z+c_{2} z^{2}+\ldots\right)\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\ldots\right)
$$

Comparing the coefficients at the same powers on the left and on the right, I find that

$$
\begin{aligned}
c_{1} & =1 \\
-\frac{1}{2} c_{1}+c_{3} & =-\frac{1}{6} \\
\frac{1}{24} c_{1}-\frac{1}{2} c_{3}+c_{5} & =\frac{1}{120}
\end{aligned}
$$

which implies that $c_{1}=1, c_{3}=1 / 3, c_{5}=2 / 15, \ldots$
However, for this example we have no rigorous way to determine the radius of convergence (and our tests for it are of no help since we know no general formula for c_{n}). Yet. See the next lecture.

[^0]: Math 452: Complex Analysis by Artem Novozhilov ${ }^{\circledR}$
 e-mail: artem.novozhilov@ndsu.edu. Spring 2019

